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ABSTRACT
Software architects plan, model, and analyze architectures
of large software like Software-as-a-Service (SaaS) applica-
tions. The scalability and elasticity of these applications
are crucially impacted by architects’ early decision for an
architectural style. However, whether this decision fostered
scalability and elasticity can currently only be tested with
the final application deployed in the target cloud computing
environment. This process leads to the high risk of unsatisfy-
ing scalability/elasticity and expensive re-implementations.

To tackle this problem, we propose an early design-time
scalability/elasticity analysis using architectural templates
(ATs). ATs are a language to formalize architectural styles
on component models for the purpose of early quality anal-
yses. This work-in-progress paper provides a first formaliza-
tion of ATs and investigates their applicability to analyze
the scalability and elasticity of SaaS applications at early
design-time by using a 3-tier example scenario. Our results
indicate that ATs are applicable to such 3-tier scenarios.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Architectural styles; D.2.8 [Software Engineering]: Met-
rics—Scalability and Elasticity

Keywords
Architectural Templates, Cloud Computing, Analysis

1. INTRODUCTION
Software architects plan, model, and analyze architectures

of large software like Software-as-a-Service (SaaS) cloud com-
puting applications. Cloud computing is characterized by
virtually unlimited resources that cloud providers account
on a pay-per-use basis and an elasticity management that
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autonomically provisions resources to deal with changing
workload [18]. To benefit from such an elasticity manage-
ment, more resources need to help SaaS applications to cope
with higher load. This need describes the scalability of a
SaaS application, i.e., its “ability to sustain increasing work-
loads by making use of additional resources” [13].

Scalability and elasticity of applications are crucially im-
pacted by architects’ early decision for an architectural style.
For instance, an architect can decide to design the middle
tier of a 3-tier application to be stateless such that middle
tier components can scale, i.e., safely be replicated and load-
balanced. However, whether this decision indeed fostered
scalability and elasticity can currently only be tested with
the final application deployed in the target cloud comput-
ing environment. Because this process involves the complete
implementation of the application, architects have to cope
with the high risk of unsatisfying scalability and elasticity
as well as of expensive re-implementations, e.g., if scalability
issues of the 3-tier application above resides in the data tier.

In related work, authors have begun to investigate analysis
approaches that allow software architects to analyze quality
properties at design-time. For example, Palladio [4] enables
architects to analyze properties like performance based on
a component model enriched with performance annotations.
However, these approaches lack explicit support for scal-
ability and elasticity [3], e.g., Palladio cannot model and
analyze changing workloads. Moreover, no current analysis
approach supports architectural styles, thus, making early
informed decisions impossible for architects.

To tackle this problem, we propose early design-time anal-
yses using architectural templates (ATs) [17]. ATs are a lan-
guage to formalize architectural styles on component models
for the purpose of model-driven quality analyses. For this
purpose, ATs allow to enrich styles by quality completions,
i.e., transformations to quality analysis or simulation mod-
els. Because we focus on SaaS applications, we enrich styles
by scalability/elasticity completions that allow architects to
analyze their applications’ scalability/elasticity by reusing
architectural knowledge manifested in such completions.

The contribution of this work-in-progress paper is a first
formalization of ATs and an investigation of their applica-
bility to analyze SaaS applications using a 3-tier example
scenario. Our results indicate that ATs can analyze scala-
bility and limitedly elasticity in such scenarios.

The remainder of this paper is organized as follows. We
introduce the example scenario in Sec. 2. Afterwards, we
describe and formalize ATs in Sec. 3. We evaluate the ap-
plicability of ATs to the example scenario in Sec. 4. Finally,
we discuss related work in Sec. 5 and conclude in Sec. 6.



2. EXAMPLE SCENARIO
As an example scenario, we consider a simplified online

book shop. An enterprise assigns a software architect to
design this shop, given the following requirements:

R1: Functionality In the shop, customers shall be able to
browse and order books.

R2: Scalability The enterprise expects a customer arrival
rate of 100 customers per minute (on average). It fur-
ther expects that this rate will grow by 10% in the first
year, i.e., increase to 110 customers per minute. In the
long run, the shop shall therefore be able to handle this
increased load without violating other requirements.

R3: Elasticity The enterprise expects that the workload
for the online book shop repeatedly changes over time.
For example, it expects that books are sold better
around Christmas while they are sold worse around
the holiday season in summer. Therefore, the system
shall proactively adapt to the anticipated workload
changes, i.e., maintain a response time of 2 seconds
or less as good as possible. For non-anticipated work-
load changes, e.g., peak workloads, the system shall
re-establish a response time of 2 seconds or less within
10 minutes once a requirement violation is detected.

Requirements R2 and R3 are typical reasons to operate
a system in an elastic cloud computing environment [13],
i.e., an environment where an elasticity management au-
tonomously provisions the required amount of resources to
cope with workload changes. Examples for such elastic cloud
computing environments are different Platform-as-a-Service
(PaaS) environments such as AWS Elastic Beanstalk [1],
Google App Engine [11], Windows Azure [20], and mO-
SAIC [21]. Because of their elasticity management, the ar-
chitect decides to operate the online shop in one of these
PaaS environments.

Web applications are commonly designed as 3-tier applica-
tions [23]. Therefore, the architect investigates possible vari-
ants of the 3-tier architectural style. The architect considers
a classical 3-tier architecture [23] as well as the SPOSAD ar-
chitectural style [16], a 3-tier variant with stateless middle
tier to foster scalability.

Figure 1 illustrates the early design-time model of the shop
as planned by the architect. In a 3-tier architecture, the
three layers of a 3-layer architecture (presentation, middle,
and data) are allocated to three different tiers. In an elastic
PaaS environment, these tiers are represented by different
replicable virtual servers. The middle tier (layer) will be
stateless if the architect follows SPOSAD.

Data TierMiddle TierPresentation Tier

3-Layer-Architecture

Data LayerMiddle Layer
[«Stateless»]

Presentation LayerSaaS 
Environ-
ment

PaaS 
Environ-
ment

Book 
Management
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Figure 1: Overview of the online book shop.

3. ARCHITECTURAL TEMPLATES
The software architect of the scenario in Sec. 2 would like

to know whether the planned online shop should be real-
ized according to (a) a classical 3-tier architecture, (b) the
SPOSAD architectural style, or (c) neither of the two. The
architect wants to decide based on whether the scalability
(R2) and elasticity (R3) requirements will be met by the
finally implemented application. In other words, the archi-
tect would like to conduct a what-if analysis for the available
options to make an informed decision.

The purpose of the architectural template (AT) language
is to help the architect in this concern: the AT language is
a language to enable analyses of early design-time models,
thus, allowing the architect to conduct the desired what-if
analysis for the online book shop [17]. The goal of the AT
language is that such analyses require as little information
as possible because architects should not have to thoroughly
implement each option to make informed decisions (no “try
& pray”).

In our previous work on the AT language, we have infor-
mally defined the AT language as a language to formalize
architectural styles on component models for the purpose of
model-driven quality analyses [17]. However, our previous
work lacks a formal definition of the AT language, e.g., based
on a metamodel. As of today, this lack makes it impossible
for software architects to apply our AT language. Therefore,
the goal of this section is to derive a first version of a formal
AT language definition. Only afterwards, we can evaluate
the applicability of the language.

According to our informal definition, we apply the AT lan-
guage in the context of model-driven analyses and compo-
nent models, thus, are interested in language-based models
and metamodels. Therefore, we can apply the metamodel-
ing concepts introduced by Kühne [14] to formally define the
AT language. Accordingly, a language L can equivalently
be defined by the metamodel MM or by the intension ι
of the language, i.e., MM(L) ∼ ι(L) [14]. The intension
of a language is the sum of its attributes [7], e.g., “repre-
sents architectural style”∧ “has name”∧ . . . . Therefore, we
have two options to approach the definition of the AT lan-
guage LAT : (a) collect all required attributes of LAT , i.e.,
derive ι(LAT ), or (b) specify the metamodel of LAT , i.e.,
define MM(LAT ) directly. Note that architects eventually
need MM(LAT ) to apply LAT in a model-driven way, for
instance, graphical editors require a metamodel.

Our idea is to begin with option (a) by deriving required
attributes based on our example scenario in Sec. 2. For this
derivation, we apply the envisioned process of “AT appli-
cation” [17], describing how software architects use the AT
language, to this scenario.1 After we have collected the at-
tributes of LAT , we end up with a first version of ι(LAT ).
Based on this intension, we can subsequently derive a first
version of MM(LAT ). The crux of the matter is that we
can, by this approach, assure that the metamodel is correct
by construction, i.e., that we have MM(LAT ) ∼ ι(LAT ).

We guide through the envisioned process of AT applica-
tion in Sec. 3.1. Afterwards, we can derive the intension and
first formalisms of the AT language in Sec. 3.2. We define
the metamodel in Sec. 3.3, allowing us in Sec. 4 to evaluate
the applicability of ATs based on the book shop scenario.

1This approach is similar to eliciting requirements based on
scenarios.



3.1 Applying Architectural Templates
The software architect of the scenario in Sec. 2 applies ATs

to design the online book shop and to analyze the shops’
scalability and elasticity. Figure 2 illustrates the process
steps for this AT application [17].

At the beginning, the architect selects an AT from a repos-
itory of ATs, assuming an “AT” is a selectable entity repre-
senting an architectural style, specified in the AT language
(step 1). For example, the architect selects a 3-tier AT.

Afterwards, the architect assigns all roles the AT requires
to the elements of the architecture, assuming “roles” refer to
the different parts of the architectural style (step 2). This as-
signment of roles initiates the transition from architectural
style to high-level system components of the architecture.
As illustrated in Fig. 1, the architect assigns presentation,
application, and data layer roles to book shop components
as well as connects these components appropriately. The
architect also assigns tier roles to presentation, middle, and
data tier resources of the architecture and specifies the al-
location of components to such tiers. Being inherent to the
3-tier style, the AT should assure that none of the styles’
constraints are violated, e.g., an AT editor should forbid
connecting presentation and data layer components.

(1) Select AT
(2) Assign AT Roles to 
Architectural Elements

(3) Analyze 
Quality Properties

Figure 2: Process steps of AT application for soft-
ware architects (from [17]).

Because the resulting architecture is based on an AT, the
architect can automatically run quality analyses such as scal-
ability and elasticity analyses afterwards (step 3). Internally,
the AT has to include a quality completion for this purpose,
i.e., a transformation to a quality analysis/simulation model
(we describe the process how to come to such a transforma-
tion in [17]). For the book shop, 3-tier AT’s completion
obtains analysis results that accurately reflect the scalabil-
ity and the elasticity of the shop. Therefore, the 3-tier AT
allows the architect to analyze his scalability/elasticity re-
quirements at design time.

Note that we evaluate AT application in Sec. 4 based on
the book shop scenario, including the specification of a scal-
ability and elasticity completion and the conduction of a
scalability and elasticity analysis.

3.2 Formalizing Architectural Templates
For deriving the intension and first formalisms of the AT

language, we analyze the AT application scenario in Sec. 3.1
for minimally required attributes enabling AT application.
Table 1 summarizes our analysis results.

The selection of ATs (step 1) induces the need of a repos-
itory of ATs to select from (“AT collectable in repository”),
along with unique identifiers (“AT has ID”) and names (“AT
has name”) for ATs. The selection criteria are based on the
architectural style represented by the AT (“AT represents
architectural style”) and supported quality analyses. For
example, architects may want to select a 3-tier AT because
this AT represents the 3-tier architectural style (along with
its promised quality properties).

Moreover, the selection of an AT from a repository re-
quires the notion of AT types and AT instances. For exam-

ple, because a selection should not alter the entity in the
repository, instantiation can be applied. Therefore, we dis-
tinguish between AT types (or short ATs), i.e., the entities
that reside in the repository, and AT instances that result
from selecting an AT (type). This notion of types and in-
stances is indeed suitable because ATs classify the AT in-
stances that can be created based on them (classification is
needed for instance-of relationships, cf. [14]). For instance,
the architect of the shop could use a different set of compo-
nents for the assignment in step 2 and the resulting archi-
tecture would still conform to the selected AT. Therefore,
AT instances are classified by referred ATs (“AT instances
are classified by ATs”).

Following the terminology of Kühne [14], ATs are type
models for AT instances, i.e., ATinstance �t AT , and AT
instances are prescriptive token models of the planned soft-
ware, i.e., software �i ATinstance. The instance-of rela-
tion between ATs and AT instances describes an ontologi-
cal instantiation because both reside on the same linguistic
level, i.e., ATinstance �

o
t AT . However, a change to a higher

linguistic level is needed in order to specify such ATs and
AT instances. This specification is enabled by our AT lan-
guage (“AT language has ATs” and “AT language has AT
instances”). Accordingly, a specified AT is a linguistic in-
stance of the AT model element of the AT language, i.e.,
AT �l

t ATlang(AT ). Analogously, a specified AT instance is
a linguistic instance of the AT instance model element of the
AT language, i.e., ATinstance �

l
t ATlang(AT instance). Fur-

thermore, the latter two model elements of the AT language
require an association describing the ontological instance-of
relation, i.e., ATlang(AT instance) has a type ATlang(AT ).

In Fig. 3, we illustrate the discussed instance-of relation-
ships based on the 3-tier AT. At the upper-right of the figure,
we show these relationships along the two linguistic levels L0

and L1 and the two ontological levels O0 and O1. Further-
more, we use Kühne’s notion of a meaning µ that “assigns
meaning to a model (element)” [14]. Our AT language de-
fines the meaning for elements of linguistic level L1 using
ι(LAT ). The meaning of the 3-tier AT (O1 on L0) is based
on the referred architectural style concept using ι(3-tier).
This concept defines the meaning of the book shop model
(O0 on L0) via its extension ε(3-tier), i.e., all elements falling
under the 3-tier concept [14]. Also our AT language spans
an extension ε(LAT ), defining all valid models specified by
our language, e.g., our book shop model.

Given these fundamental formalisms of our AT language,
we can now inspect the assignment of AT roles to archi-
tectural elements (step 2). This assignment requires ATs
to specify the available roles (“AT has roles”). Furthermore,
ATs can define constraints based on such roles (“AT has con-
straints” and “constraints relate to roles”). For the assign-
ment of roles to components, AT instances have to maintain
an appropriate reference (“AT instance has references be-
tween components and roles”). The same need for references
holds for resources of the architecture that, for instance, rep-
resent the tiers of the 3-tier architecture (“AT instance has
references between resources and roles”).

Finally, the quality property analysis (step 3) requires that
ATs specify a quality completion (“AT has quality comple-
tion”), e.g., for scalability and elasticity. For such a com-
pletion, ATs should reference a model transformation that
transforms to an appropriate quality analysis or simulation
model.
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Figure 3: Instance-of relationships of the book shop example (based on [14]).

Table 1: Intension of the AT language (ι(LAT ))

Element Attributes

AT language “has ATs”, “has AT instances”

AT “collectable in repository”, “has ID”, “has name”,
“represents architectural style”, “has roles”, “has
constraints”, “constraints relate to roles”, “has
quality completion”

AT instance “classified by ATs”, “has references between com-
ponents and roles”, “has references between re-
sources and roles”

3.3 Metamodeling Architectural Templates
Based on the formalization of the AT language in Sec. 3.2,

we construct an initial metamodel for the AT language in
this section. For this construction, we assure that the meta-
model adheres to the intension of the AT language ι(LAT )
given in Tab. 1. Because this intension only covers the es-
sential aspects of our AT language for evaluating the ap-
plicability of ATs, we exclude aspects for reusability and
extendability in our metamodel. For example, we provide
no means for extending a 3-layer AT in order to define a
3-tier AT. We leave the extension of our initial metamodel
with such additional aspects as future work.

Moreover, our AT metamodel extends the Palladio Com-
ponent Model (PCM) [4], a component-model for perfor-
mance analysis. By extending the PCM, we can reuse several
elements of the PCM: (1) AT instances reuse PCM’s compo-
nent instances (so-called “AssemblyContexts”) for the refer-
ence between components and roles, (2) AT instances reuse
PCM’s hardware resource descriptions (so-called “Resource-
Containers”) for the reference between resources and roles,
(3) constraints of ATs can directly be specified by reusing

PCM’s contracts for provided operations (so-called “Provid-
edComponentTypes”) and for provided plus required opera-
tions (so-called “CompleteComponentTypes”). Another ad-
vantage of extending the PCM is that it can be used for
performance analysis. This performance analysis can also
be used as a basis for analyzing scalability and efficiency as
we see in the evaluation of the applicability of ATs in Sec. 4.

Following the intension of the AT language, its metamodel
consists of two sub metamodels: a metamodel for ATs (i.e.,
AT types) and a metamodel for AT instances. We illustrate
both metamodels in separate figures, the AT metamodel in
Fig. 4 and the AT instance metamodel in Fig. 5.

The central metaclass of the AT metamodel (Fig. 4) is the
AT metaclass, representing ATs. According to the intension
of ATs, this metamodel includes the metaclasses Repository,
Role, Constraint, and Completion. These metaclasses are as-
sociated to the AT metaclass as described by the intension
of ATs: ATs have a Completion, Repository allows to collect a
set of ATs because of its containment association, and anal-
ogously, ATs include a set of Roles and Constraints. Further-
more, all of these metaclasses inherit from PCM’s Entity,
thus, giving each metaclass a name and a unique identifier

attribute. Constraints have to relate to one or more Roles,
thereby, defining their semantics.

As an extension to the intension of the AT language, we
propose several Constraint types: ProvidedInterfaceConstraint

constraints a role to be a component that provides a given
set of operations (via ProvidesComponentType); CompleteInter-

faceConstraint constraints a role to be a component that pro-
vides a given set of operations and that can only require a
given sets of operations at maximum (via CompleteCompo-

nentType); AllocationConstraint constraints the allocation be-
tween a component and resource roles; OCLConstraint con-
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straints roles based on OCL expressions; and other types
(not shown) like ComponentRoleConstraint and ResourceRole-

Constraint that restrict the assignability of roles to compo-
nents or resources. In future work, we expect to define more
of such commonly applicable constraint types, thus, provid-
ing specialized constraints with more focused semantics than
the general-purpose OCLConstraint.

The central metaclass of the AT instance metamodel is AT

instance (Fig. 5). Because AT instance inherits from Entity, AT
instances have a name and a unique identifier. Furthermore,
AT instance has exactly one AT defining its type (also see
Fig. 3). The latter also specifies the set of roles that are part
of the AT. This specification enables AT instances to contain
references between roles and components (Role2Component)
as well as between roles and resources (Role2Resource). Com-
ponents and resources are represented by PCM’s Assembly-

Contexts and ResourceContainers, respectively.
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Figure 6: Roles and constraints of 3-tier and
SPOSAD ATs. The SPOSAD AT extends the 3-tier
AT by additional constraints on the middle layer and
middle tier (marked in gray).

4. EVALUATION OF APPLICABILITY
To evaluate the applicability of ATs, we first use the AT

language defined in Sec. 3 to specify a 3-tier AT and a
SPOSAD AT (Sec. 4.1). Subsequently, we apply these ATs
to the book shop scenario of Sec. 2 by specifying a book
shop AT instance for each of these types, i.e., we specify
a 3-tier book shop and a SPOSAD book shop model us-
ing AT instances (Sec. 4.2). Finally, we use these instances
to conduct scalability and elasticity analyses (Sec. 4.3). We
conclude that ATs are applicable for scalability analyses but
have limits for elasticity analyses (Sec. 4.4).

4.1 3-Tier and SPOSAD AT
To specify a 3-tier and a SPOSAD AT, we first formalize

roles and constraints given by the 3-tier and the SPOSAD
architectural styles, respectively. Fig. 6 illustrates our re-
sulting formalization for both ATs. We illustrate roles by
dashed rectangles. Role names are at the top of the rectan-
gle and role constraints at the bottom of the rectangle.

Accordingly, our 3-tier AT consists of three presentation
layer roles and three tier roles (presentation, middle, and
data, respectively). Appropriate constraints ensure that
layer roles can only be assigned to components (Component-

RoleConstraint), tier roles can only be assigned to resources
(ResourceRoleConstraint), and layers can only be allocated to
the corresponding tiers (AllocationConstraint). Furthermore,
we require at least an HTTP interface on the presentation
layer (ProvideConstraint) and that presentation layer compo-
nents cannot directly communicate to data layer components
(OCLConstraint).

In Fig. 6, we also illustrate roles and constraints of the
SPOSAD AT. Because SPOSAD is a 3-tier variation, we
illustrate the SPOSAD AT by extending the 3-tier AT illus-
tration (marked in gray). The only differences to the 3-tier
AT are the different name of the AT (“SPOSAD” instead of
“3-tier”) and two additional constraints, a StatelessConstraint

for the middle layer and a ReplicableConstraint for the middle
tier role. The StatelessConstraint ensures that only stateless
components are allowed to play the middle layer role. In
conjunction with the ReplicableConstraint, one of SPOSAD’s
main characteristics is ensured, i.e., that middle layer com-
ponents have to be stateless such that they can safely be
duplicated and load-balanced using replicated tiers.



Besides the formalization of roles and constraints, we also
have to specify a completion for each of the two ATs. To
specify such a completion, we have to describe how to map to
an analysis model that can serve for scalability and elasticity
analyses. Such analyses shall allow us to check the scalability
(R2) and elasticity (R3) requirements we stated in Sec. 2.
Our idea to realize such a completion is to map to usual
PCM models. Then, we can conduct a Palladio analysis
based on these models and use Palladio’s analysis results to
calculate the scalability and elasticity metrics formulated in
R2 and R3 if the mapping is semantic-preserving.

For the 3-tier AT, such a completion is the identity map-
ping to a usual PCM model. All constraints of the 3-tier
AT are already fulfilled if we assume that the AT is applied
on a usual PCM model and that, during PCM model spec-
ification, the constraints are assured by construction. For
instance, an AT editor extension for PCM models could as-
sure such a behavior.

For the SPOSAD AT, a completion additionally has to
consider the StatelessConstraint and the ReplicableConstraint.
These constraints cannot be assured by construction be-
cause neither stateless components nor replication are de-
fault PCM features. Therefore, our idea is to make use of
the SimuLizar [2] PCM extension that allows for specifying
self-adaptation rules, e.g., for replication.

Because of the constraints ReplicableConstraint and Stateless-

Constraint, our completion can safely create adaptation ac-
tions (using SimuLizar models) that (1) dynamically repli-
cate middle layer components to additional tiers and (2)
connect these components to a load balancer that is allo-
cated on a separate tier between presentation and middle
tier. We can safely model the load balancer with zero perfor-
mance impact on a separate tier if we assume that the load
balancer itself has a negligible performance impact. How-
ever, without further assumptions, the resulting model is
incomplete because a complete self-adaptation rule consists
of adaptation actions and adaptation constraints that trig-
ger these actions. We do not specify such adaptation con-
straints because such a constraint is application-specific and
can, thus, not be specified in an AT. Therefore, we require
that the ReplicableConstraint additionally constraints AT in-
stances to specify adaptation constraints that can be used
by our completion to map to a complete PCM (extended by
SimuLizar) model. Then, this model preserves the semantics
of the SPOSAD AT and is analyzable by Palladio.

4.2 3-Tier and SPOSAD Book Shop Models
In our scenario, the application of 3-tier AT and SPOSAD

AT results in a 3-tier model and a SPOSAD model of the
book shop. For this application, we can follow the process
described in Sec. 3.1.

We start by selecting the 3-tier AT first, thus, creating a
3-tier AT instance. Having the 3-tier AT selected, we assign
all of its roles to an initial, component-based design of our
architecture using a PCM model. We illustrate this assign-
ment in Fig. 7 using a diagram that combines several view
types (view types for component structure, resources, and
customer scenarios). The online shop model consists of the
three inter-connected components and resources as already
discussed before. The allocation of components to resources
can be derived based on the selected AT (layers are always
allocated to corresponding tiers). Furthermore, we specify
several scalability- and elasticity-relevant information like

the speed of resources, components’ resource demand, and
the workloads on the system in the form of customer sce-
narios (all of these information are denoted in yellow UML
notes). For resource speed and demands, we use Amazon’s
EC2 Compute Unit (ECU) units that describe CPU integer
processing power relative to hardware (ECUs are based on
hardware benchmarks). For customer scenarios, we specify
the changing workload information described in the book
shop scenario in Sec. 2. For instance, we expect an initial
customer arrival rate of 100 customers per minute and a
long-term increase of this rate by 10%. We exemplified non-
anticipated peak workloads that increase the arrival rate by
30% using an occurrence probability of 0.1%. Based on this
model, we analyze it for scalability and elasticity properties
in Sec. 4.3.

Data TierMiddle TierPresentation Tier

Data LayerMiddle LayerPresentation Layer

Book 
Management

Book Database
Book Shop 
Frontend

WWW 
Server

Application
Server

SQL
Server

Customer

Speed: 100 ECU/min.

Arrival Rate: 100/min.
Long-term: +10%
Christmas: +20%
Holiday: -20%
Non-anticipated: +30%
P(Non-anticipated): 0.1%

Demand: 
0.01 ECU

Demand: 
0.10 ECU

Demand: 
0.01 ECU

Replicate if:
  utilization > 80% for 5 min.

Figure 7: Assignment of roles to components and
resources using AT instances. The SPOSAD-based
model extends the 3-tier-based model by specifying
an adaptation constraint for the middle tier resource
(UML note with striped background).

We proceed analogously for the SPOSAD AT. However,
we have to provide additional information when assigning
the role of middle tier to the application server. Because
the SPOSAD AT describes a replicable middle tier, its AT
instances request for adaptation conditions, which are only
available at instantiation time. Therefore, we specify the
condition to replicate whenever the utilization of a mid-
dle tier CPU is greater than 80% for consecutive 5 minutes
(UML note with striped background in Fig. 7).

4.3 Analysis of the Book Shop Models
For analyzing the 3-tier and the SPOSAD book shop mod-

els of Sec. 4.2, we first apply the completions described in
Sec. 4.1 to each model and, subsequently, run a normal Pal-
ladio/SimuLizar analysis on the completions’ output mod-
els. In this section, we describe these output models and
argue why we can only conduct a scalability analysis and no
elasticity analysis without extending Palladio.

For component structure and resources, we simply apply
the identity mapping of our models to the corresponding
Palladio models for components and resources. We derive
Palladio’s allocation model from the AT specifications that
state that layers are allocated to corresponding tiers. We
can also directly map the adaptation condition and adapta-
tion rule specified in SPOSAD AT and SPOSAD book shop
model to corresponding SimuLizar models.

However, we cannot directly map the customer scenario
specification to Palladio/SimuLizar because this specifica-
tion alters the workload on the system depending on passed



time, e.g., Christmas characterizes a concrete point in time
where workload increases. This dependency of the workload
to time is currently impossible to model and analyze with
Palladio/SimuLizar; only static workload distributions can
be modeled and analyzed. This lack does not prevent us
from analyzing scalability but from analyzing elasticity.

For scalability, we run several independent Palladio/Simu-
Lizar analyses. We start with an analysis with an arrival
rate of 100 customers per minute. Then, we consecutively
increase this rate until we reach the highest possible arrival
rate of ∼ 172 customers per minute (Christmas after 1 year
plus a non-anticipated peak: 100 · 1.1 · 1.2 · 1.3 ≈ 172). For
every analysis result, we investigate the violation of require-
ments in the steady state, e.g., whether the response time
limit of 2 seconds is exceeded. We can neglect elasticity for
these investigations because we investigate the steady-state
and no transient adaptation phases. If every analysis result
confirms that no other requirements are violated, we can
conclude that our scalability requirement is met.

For both of our models, our analysis yields that the scal-
ability requirement is violated as soon as the arrival rate in-
creases beyond 100 customers per minute because “WWW
Server”as well as“SQL Server”become bottleneck resources.
Therefore, we would suggest the architect to follow neither
of the two designs in the current form. Instead, the architect
should, e.g., increase the processing speed of the two bottle-
neck servers to 200 ECU per minute, which would result in a
scalable system (confirmable by re-executing the scalability
analysis).

For elasticity, Palladio needs to be extended to support
time-dependent, dynamic customer scenarios. Without such
an extension, transient phases resulting from sudden peaks
or periodic workload changes cannot be modeled and ana-
lyzed. However, these transient phases have to be investi-
gated for elasticity analyses because elasticity properties are
related to such phases only. For example, a possible elastic-
ity metric is the number of requirement violations during
such a transient phase. Because of this lack in Palladio, our
future work will target a suitable Palladio extension.

4.4 Assessing the Applicability of ATs
Because we successfully conducted a scalability analysis

in Sec. 4.3, we conclude that ATs are applicable for scal-
ability analyses of the two variants of 3-tier architectures
(classical 3-tier and SPOSAD). Because we investigated two
variants, our results indicate that ATs are generalizable to 3-
tier-based architectures in general. However, we plan to ex-
tend our results by more 3-tier-based examples to strengthen
these initial insights. In this context, we plan to enrich
our initial ATs by multi-tenancy features as well as special
technologies on the data layer such as (replicable) NoSQL
databases and a MapReduce programming model.

Because we were unable to conduct an elasticity analy-
sis, we conclude that our approach to map ATs to Palla-
dio/SimuLizar is currently inapplicable for such analyses.
However, we identified Palladio’s lack of time-dependent, dy-
namic customer scenarios as the reason for this result. We
expect that ATs are applicable for elasticity analyses once
we provide a suitable Palladio extension for such purposes.

In summary, our initial results indicate that ATs are appli-
cable for variants of 3-tier architectures. These results are
currently limited and more investigations have to be pro-
vided to strengthen these.

5. RELATED WORK
Related work tackling the engineering of scalable and elas-

tic SaaS applications can be classified into two areas: (1) ar-
chitectural styles for scalability and elasticity and (2) per-
formance engineering serving as a basis for scalability and
elasticity engineering.

A generally rich set of literature provides, classifies, and
surveys sets of architectural styles (e.g., [6], [22]). However,
these styles lack an explicit consideration of cloud computing
environments as well as a focus on scalability and elasticity.

In the context of cloud computing, typically applied styles
are REST [10] for HTTP and SPIAR [19] for AJAX. Also Erl
et al. [9] describe a set of cloud computing styles that foster
scalability and elasticity (e.g., load balanced virtual server
instances). These styles have in common that they target the
infrastructure in which SaaS applications run. Third party
cloud computing providers typically provide this infrastruc-
ture by offering (1) a deployment of SaaS applications in
application servers (PaaS providers) or (2) access to (vir-
tual) nodes where users can operate their SaaS application
(IaaS providers). Therefore, these third party providers can
utilize the presented architectural styles. However, because
these styles lack a focus on implementing SaaS applications,
they only implicitly help architects who engineer the SaaS
layer of these applications. In contrast, we focus directly and
explicitly on architectural styles for SaaS applications by in-
vestigating the few architectural styles that do cover aspects
of SaaS applications and analyzing system designs based on
such styles using our AT language. Two examples for these
styles are SPOSAD [16] and SOCCA [24]. As we have seen,
SPOSAD describes a 3-tier variation that promotes a state-
less middle tier for scalability and elasticity [16]. Because
they are stateless, components of the middle tier can then
safely be replicated (scaled-out) and load-balanced.

The second area, performance engineering, offers several
approaches recently classified and surveyed by Koziolek [15].
These approaches allow for analyzing the performance (re-
sponse time, throughput, utilization) of component-based
systems as, for example, Palladio [4]. However, they lack
support for cloud computing characteristics, e.g., an elastic
provisioning of computing resources. Because of these char-
acteristics, traditional performance metrics are insufficient.

Becker et al. [3] survey model-driven performance engi-
neering approaches that support an elasticity management
via self-adaptation, e.g., the SimuLizar [2] approach that
extends Palladio. They conclude that these approaches are
still limited because only two approaches target design-time
models and because realistic validations by case studies are
missing. However, software architects require design-time
approaches, and appropriate case studies are the means to
systematically find architectural styles for scalable and elas-
tic SaaS applications. Especially the latter aspect lacks in-
vestigation, i.e., using performance engineering techniques
to conduct scalability and elasticity analyses. Therefore, we
extend existing performance analysis approaches like Pal-
ladio and SimuLizar to support scalability and elasticity
analyses. For example, we propose to extend Palladio by
time-dependent, dynamic customer scenarios. Furthermore,
we investigate ATs for design-time scalability and elasticity
analyses of SaaS applications based on architectural styles.
In particular, to cope with the lack of realistic validations,
we want to conduct case studies to identify appropriate ar-
chitectural styles for scalable and elastic SaaS applications.



6. CONCLUSION
In this work-in-progress paper, we propose a formalization

of the Architectural Template (AT) language in terms of a
novel metamodel. We use this language to formalize 3-tier
and SPOSAD architectural styles. By applying the formal-
ized styles to design and analyze an example online book
shop, we provide evidence that our AT language is appli-
cable for variants of 3-tier architectures (such as SPOSAD).
Moreover, our evaluation shows that scalability analyses can
be conducted by utilizing existing performance engineering
approaches. However, for elasticity analyses, it is currently
impossible to apply the AT language. We identify the miss-
ing support for dynamic customer scenarios in performance
engineering approaches as main reason for this lack.

Our findings help software architects in making architec-
tural decisions when designing scalable and elastic SaaS ap-
plications. The AT language helps these architects to make
such decisions explicit, analyzable, and reusable. Therefore,
software architects benefit from a lower risk of implementing
SaaS applications with unsatisfying scalability and elastic-
ity properties. Moreover, we point to deficiencies in perfor-
mance engineering approaches, thus, motivating scientists
to investigate possible improvements to these approaches.

The AT language is still work-in-progress, thus, requiring
several future work directions. First, the AT language can
be extended by further role constraints and extension mech-
anisms. For instance, extending the 3-tier AT to specify the
SPOSAD AT can be enabled. Second, performance engi-
neering approaches can be extended by dynamic customer
scenarios to support elasticity analyses. Third, tool support
can be provided to automate scalability and elasticity analy-
ses based on the AT language. Fourth, our initial evaluation
results should be strengthened by additional evaluations.
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